乙型肝炎病毒抗原表位特异性细胞毒性 T 细胞研究进展

吴姗姗 唐余燕 王洁玲 陈小华 张毅 汤正好 臧国庆 余永胜

【摘要】急性乙型肝炎患者体内有特异性和多克隆性的 CTLs，而慢性乙型肝炎患者体内 CTLs 很少，只能识别单一抗原表位，因此病毒抗原表位特异性 CTL 免疫应答不足与 HBV 的慢性化有关。深入了解 HBV 抗原特异性 CTLs 的产生及其在病毒清除中的作用能够为新的抗病毒手段提供理论基础。

【关键词】T 淋巴细胞；细胞毒性；表位；免疫治疗

基金项目：上海市教育委员会科研创新项目（15ZZ013）


Department of Infectious Diseases, the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China

Corresponding author: Yu Yongsheng, Email: yuyongsheng@medmail.com.cn

【Abstract】Cytotoxic T lymphocytes (CTLs) are multi-specific and polyclonal in patients with acute hepatitis B. However, in chronic hepatitis B patients, antigen-specific CTLs are barely detectable, and only single epitope can be recognized. Herein, there is a correlation between the insufficient epitope-specific CTLs immune response and the chronicity of HBV infection. A better understanding of the production of HBV antigen-specific CTLs and its role in viral clearance may provide a theoretical basis for novel antiviral treatment.

【Key words】T lymphocytes, cytotoxicity; Epitopes; Immunotherapy

Fund program: Innovation Program of Shanghai Municipal Education Commission (15ZZ013)

全球约有 3.5 亿人感染 HBV，超过 2.48 亿是 HBV 慢性携带者，其中 1/3 的慢性 HBV 携带者最终发展为重症乙型肝炎相关的并发症，慢性 HBV 感染相关的肝衰竭和 HCC 是造成 HBV 感染死亡率居高不下的主要原因。免疫系统介导的免疫应答在感染性疾病的控制和转归中发挥重要作用，对 HBV 抗原表位特异性 CTL 应答的深入研究也许能够解决 HBV 慢性感染的问题。本文就 HBV 特异性 CTL 应答在慢性乙型肝炎治疗中发挥的作用及其研究进展进行综述。

一. HBV 感染的清除机制

1. 免疫系统清除 HBV 的机制

病毒抗原表位引起的免疫应答在 HBV 清除和肝脏疾病的发展中发挥重要作用。免疫系统处理胞外病毒和病毒感染细胞有不同的机制：其中一个系统依赖可溶性分泌蛋白，即病毒抗原刺激感染细胞表面表达病毒特异性 B 细胞免疫球蛋白，这一蛋白可被可溶性分泌蛋白识别；另一个系统是基于 T 细胞异源二聚体结合的识别性 T 细胞能够加工与 MHC 分子结合后的短肽，人类白细胞抗原 (HLA) - I 类分子结合来自胞内加工的肽段，因此这些分子提供消除胞内病毒并在胞内浸润的 CD8 T 细胞。HLA- II 类分子结合来自细胞外经抗原提呈细胞 (APC) 蛋白酸化的病毒肽段。APC 提呈来源病毒表位肽与 T 细胞特异性 B 细胞活性因子的 HLA- II 限制性 CD4 T 细胞结合，激活对病毒的清除和控制非常重要的体液免疫和细胞适应性免疫。

cccDNA 是 HBV 病毒转录的模板，它是机体清除 HBV 最重要的障碍。有研究认为 HBV 感染不能引起 IFN 活化相关基因 (ISG) 的表达，HBV 因此被认为是一个“隐形病毒”而不能被免疫系统识别。在急性感染中，HBV 特异性 CTL 应答表达具有多克隆和特异性，HBV 特异性 CTL 应答在病毒持续复制和免疫耐受的慢性乙型肝炎患者中很弱甚至测不到，说明 HBV 特异性 CTL 应答在疾病进展和宿主抗 HBV 感染免疫反应中发挥重要作用，同时免疫逃逸的病毒突变表位肽不能被特异性 CTL 识别也可能造成病毒持续存在。

2. HBV 特异性 CTL 清除 HBV 的机制

HBV 对肝细胞没有直接的细胞毒性作用，但针对病毒
抗原的免疫反应在肝病和病毒清除中发挥重要作用。这种免疫反应是针对表达在肝细胞表面并与 HLA 结合的病毒相关肽。抗原位点特异性 CTL 在肝炎发作过程中具有抗病毒和肝细胞和损害两方面的作用, MHC-I 类区域的多态性允许其来源于病毒抗原的多种肽段呈递给宿主免疫系统, 从而诱导抗病毒的 CTL 应答。在 HBV 感染中, MHC-I 类限制性 CTL 应答在介导抗病毒特异性免疫清除中发挥重要作用。免疫组化研究证实相比慢性乙型肝炎患者, 急性乙型肝炎患者中 MHC-I 分子表达增多[19]。在达到肝损害峰值的数周前 HBV 特异性 CD8+T 细胞已经浸润肝脏, 表明 HBV 特异性 T 细胞免疫反应发生在感染早期阶段从而抑制 HBV 的复制[20]。病毒性 CD8+T 细胞识别并结合众多 HBV 抗原表位肽, 通过细胞毒性肽和非细胞毒性肽实施清除病毒。由于慢性乙型肝炎患者的 HBV 特异性 CD4+ 和 CD8+T 细胞反应显著降低, 所以研究表明诱导对 HBV 抗原表位肽的特异性 CD4+T 细胞（尤其是 Th1 型）以及 CD8+T 细胞反应, 能逆转机体的免疫耐受状态[21]。慢性乙型肝炎患者 CTL 应答水平不同, 表明免疫状态与病毒清除及疾病的归转有关。

二、T 细胞表位在诱导 HBV 抗原表位特异性 CTL 中的作用

1. 表位的分类

抗原位点特异性 CD8+T 细胞 (CTL) 介导的细胞免疫应答在控制 HBV 感染和病毒清除, 乙型肝炎免疫耐受, 免疫逃避以及疾病转归中发挥重要作用。表位是免疫应答中被特异的效应分子或 T 细胞和 B 细胞识别抗原分子上的特定结构点。根据识别主体的不同, 表位可以分为 B 细胞表位和 T 细胞表位。T 细胞表位则是指在特异性免疫应答中, 抗原经 APC 处理后, 由 MHC 分子向 T 细胞表面抗原受体 (TCR) 提呈的线性肽段。到目前为止人们已在 8 种 HBV 基因序列中发现 60 种 HBV 特异性的 HLA-I 限制性表位和 32 种 HBV 特异性的 HLA-II 限制性表位[22]。

CTL 由表达在感染肝细胞表面的 HBV 蛋白 HLA-I 类限制性表位肽激活。HLA-I 分子与来源于感染细胞内加工合成的病毒抗原的肽段结合, 而 HLA-II 分子结合 APC 加工处理的细胞外抗原。APC 提呈外源性病毒肽段到 HLA-A2 限制性 CD4+T 细胞, 随后分泌细胞因子调节抗原特异性 B 细胞的活化从而分泌相应的细胞因子[23]。能够与 MHC 分子结合且被特异性 TCR 识别的肽段称为 T 细胞表位, 特定的 TCR 识别不同的抗原位点变异有一定的局限性, 不同的 TCR 与 MHC 伪装物相互作用说明 CTL 应答的多样性, 这两个功能在对快速变异的病毒产生 CT 应答中非常重要。抗原位点的特异性受到序列保守程度和与特定 HLA 分子亲和力的影响[24]。表位与 MHC 分子亲和力的大小依赖于两种分子的分子结构和化学性质。

2. HBV 抗原表位特异性 CTL 的产生

HBV 感染中, CD8+T 细胞靶向结合多种表位肽并与感染
特异性 T 细胞应答可能在病毒控制和清除中起主导作用[39]。

不同 HBV 治疗性疫苗已先后问世，例如：蛋白质或表位肽为基础的疫苗，DNA 疫苗、细胞介导的疫苗以及联合治疗[39]，其中能够引起强烈 CTL 应答的蛋白或表位肽为基础的疫苗，包括主动免疫优势 HLA-A2 限制性肽表位 HbcAg18-27 和一个破伤风类毒素 T 折叠细胞表位肽。免疫分子 HbcAg 能够有效结合并激活幼稚 C 细胞，使它们能够作为有效的 APC 从而增强 T 细胞启动，已有证据表明 HbcAg 能够作为潜在佐剂从而产生相关抗原肽的 HBV 特异性 T 细胞反应[22-25]。

HBV 特异性 T 细胞表位是特异性免疫应答得以激发的重要原动力，处于免疫识别和免疫激活的核心位置[24-25]。HLA-A2 限制性 CTL 表位 HbcAg18-27 (FLISDFDFSV) 被认为是 HBV 特异性 CTL 表位研究中的最为经典的序列，也是目前被应用最多的 HBV 特异性表位肽。HbcAg 是公认的最有效的引起 HLA-Ⅱ限制性免疫反应的抗原。HBV 特异性 HLA-Ⅰ 类限制性 CTL 与 HbcAg 特异性 HLA-Ⅱ 限制 Th 细胞反应似乎与急性和慢性 HBV 清除相关，核心抗原反应性 T 细胞的过继转移是清除慢性 HBV 感染的方法[24, 25]。

四、HBV 表位特异性 CTLs 在 HBV 感染中的应用

病毒特异性 T 细胞表达抑制分子如 PD-1，CTLA4，SLAM 和 Tim-3，这些分子使 T 细胞不能增殖或产生细胞因子。研究表明，HBV 感染患者中功能活性的 HBV 特异性 CD8 T 细胞的存在对于控制 HBV 复制及预防肝损伤至关重要[29]。APC 在提呈、激活 HBV 特异性 CTL 应答中起着非常重要的作用，而这些特异性 CTL 在 HBV 清除等方面扮演着至关重要的角色[29]。APC 可以将外来抗原提呈给 CD4 T 和 CD8 T 细胞并促进细胞因子的产生，例如 IL-12 和 TNF-α 等，这些细胞因子可以诱导 IFN-γ 的产生以及促进 CD8 T 细胞的增殖。IL-12 可以诱导 CD4 T 细胞向 Th1 型细胞分化，从而增强机体的 CTL 应答，有利于病毒的尽快清除[29]。目前关于急性感染者的 HBV 特异性 CTL 应答的研究表明有效抑制病毒与特异性 CTL 应答有关，这些特异性 CTL 应答针对 HBV 核心蛋白、多聚核蛋白和包膜蛋白的不同表位[29]。Maimi 等[29]的研究发现在抗-HBe 阳性或者病毒载量低的患者中 HBV 特异性 CTL 数量增多，表明 HBV 抗原表位特异性 CTL 在控制病毒复制中起重要作用。

由于 HBV 相关疾病的多样性与 HBV 特异性适应性免疫应答的质量和大小密切相关，所以经过免疫治疗后恢复病毒特异性 T 细胞应答能够显著控制 HBV 持续感染。利用细胞因子（IL-12 和 IL-18）或者免疫 HbcAg18-27 质粒，注射 DNA 质粒、免疫 DCs 引起的 HBV 特异性 CTLs 能够控制 HBV 感染[30]。

五、结语

尽管对于 HBV 感染有效的抗病毒治疗方案，包括 IFN-α 和核苷类似物已被广泛应用，但是由于不良反应和耐药性的产生而使其在抗 HBV 治疗中有一定的局限性[28]。HBV 相关疾病表现的多样性与 HBV 特异性适应性免疫应答的质量和大小密切相关，诱导表位特异性 CTL 免疫反应能够控制 HBV 感染。HBV 特异性免疫疫苗正进入新时代，并且为 HBV 的治疗建立新的治疗理念。

参考文献
